当前位置:首页 > 教学资源

圆柱的体积教学设计人教版(精选29篇)

时间:2024-02-18 05:25:43
圆柱的体积教学设计人教版(精选29篇)[本文共42494字]

小编为你精心整理了29篇《圆柱的体积教学设计人教版》的范文,但愿对你的工作学习带来帮助,希望你能喜欢!当然你还可以在搜索到更多与《圆柱的体积教学设计人教版》相关的范文。

篇一:圆柱的体积教学设计

教学目标

1.使学生初步理解和掌握圆柱的体积计算公式。会用公式计算圆柱的体积,并能应用分式解答一些实际问题。

2.在充分展示体积公式推导过程的基础上,培养学生推理归纳能力和自学能力。

教学重点: 圆柱体积公式推导过程;正确理解圆柱体积公式推导过程。

教学难点:圆柱体积公式推导过程;正确理解圆柱体积公式推导过程。

教 法:启发点拨,归纳总结,直观演示

学 法:自学归纳法,小组交流法

课前准备:课件

教学过程:

一、定向导学(5分)

(一)导学

1.什么叫体积?(指名回答)

生:物体所占空间的大小叫做体积。

师:你学过哪些体积的计算公式?(指名回答)

根据学生的回答,板书:

长方体体积=底面积×高

2.圆面积公式是怎样推导出来的?

生:把一个圆,平均分成数个扇形,拼成一个近似长方形,长方形的长相当于圆周长的一半,宽相当于圆的半径,(根据学生的叙述,边用幻灯片演示。)得到圆面积公式s=2πr。

3.动脑筋想一想,圆柱的体积,能不能转化成你学过的形体,推导出计算圆柱体积的公式?

4、导入

我们已经认识了圆柱体,学会了圆柱体侧面积和表面积的计算,今天研究圆柱的体积。(板书:圆柱的体积)

(二)定向

出示学习目标:

1、理解和掌握圆柱的体积计算公式。

2、会用公式计算圆柱的体积,并能运用公式解答一些实际问题。

二、合作交流(15分)

1.阅读书25页。

2、看书回答:

(1)圆柱体是怎样变成近似长方体的?

(2)切拼成的长方体的体积、底面积和高分别与圆柱体的体积、底面积、高有什么关系?

(3)怎样计算切拼成的长方体体积?为什么 ?用字母怎样表示?

3、小组展评交流结果。

(1)展评题(1)。圆柱体是怎样变成长方体的?把圆柱体底面分成许多相等的扇形(例如分成16份),然后把圆柱切开,拼成一个近似长方体。(教师加以说明,底面扇形平均分的份数越多,拼成的立体图形越接近长方体。)

(2)展评题2。

切拼成的长方体的体积相当于圆柱的体积,长方体的底面积相当于圆柱体的底面积,长方体的高相当于圆柱体的高。

(3)展评题3

圆柱体积=底面积×高

v=sh

4、公式检测

学生独立完成书上做一做1、2题。

三、自主学习(5)

1、出示例6

下面这个杯子能不能装下这袋奶

直径8厘米 高10厘米 这袋奶498毫升

2、尝试列式计算.

3、学生展示自学结果。

4、小结

小结:要求圆柱体积,必须知道圆柱的底面积(如果给半径、直径、底面周长,先求出底面积)和高。注意统一单位名称。

四、质疑探究(2)

已知圆柱的底面周长和高又怎样求圆柱的体积?

五、

小结检测

13

分)

(一)小结

让学生说出圆柱体积的推导过程,体积公式。

(二)检测

1、把圆柱切开,可拼成一个( ),圆柱的体积等于近似长方体的( ),圆柱的底面积等于( ),圆柱的高等于( ),所以圆柱的体积=( )。

2.圆柱体的底面积3.14平方分米,高40厘米。它的体积是多少?

3.一根圆柱形铁棒,底面周长是12.56厘米,长是100厘米,它的体积是多少?

4 判断正误,对的画“√”,错误的画“×”。

(1)圆柱体的底面积越大,它的体积越大。( )

(2)圆柱体的高越长,它的体积越大。( )

(3)圆柱体的体积与长方体的体积相等。( )

(4)圆柱体的底面直径和高可以相等。( )

5、 一张长方形的纸长6.28分米,宽4分米。用它分别围成两个圆柱体,它们的体积大小一样吗?请你计算一下。

板书设计:

圆柱的体积

圆柱体积=底面积×高

v=sh

75× 90=6750(立方厘米) 杯子的底面积:3.14×(8/2) ×(8/2) ×10=502.4(ml)

答:它的体积是6750立方米。答:这个杯子能装下这袋奶。

篇二:圆柱的体积教学设计

教学圆锥的体积是在掌握了圆锥的认识和圆柱的体积的基础上教学的。教学时让学生通过实验来发现圆锥与等底等高的圆柱之间的关系,从而得出圆锥的体

积等于和它等底等高的圆柱体积的三分之一,并能运用这个关系计算圆锥的体积,让学生从感性认识上升到理性认识。

我让学生观察,先猜测圆锥的体积和什么有关,学生联系到了圆柱的体积,在猜想中激发学生的学习兴趣,使学生明白学习目标。教师从展示实物图形到空间图形,采用对比的方法,不断加深学生对形体的认识。然后让学生动手实验:有的组用捏橡皮泥的方法,有的组用到沙子的方法;有的组用计算的方法。让孩子亲历教学的验证过程,从实验中得出结论:等底等高的圆锥体体积是圆柱体体积的三分之一,从而推出圆锥的体积公式。接着我趁热打铁,让学生想一想等积等高的时候,圆柱和圆锥有什么样的关系?等积等底的时候,圆柱和圆锥又会有什么样的关系?这样,就有一种水到渠成的感觉。对圆锥的体积建立了鲜明的印象之后,就应用公式解决实际的生活问题,起到巩固深化知识点的作用。

圆锥的体积这节课的教学具有下面的特点,一是在教学新课时,没有像传统教学那样,直接拿出等底等高的圆柱和圆锥容器的教具,让学生观察倒沙实验,而是通过师生交流、问答、猜想等形式,调动学生的积极性,激发学生强烈的探究欲望,学生迫切希望通过实验来证实自己的猜想,所以做起实验就兴趣盎然;二是在实验时,让学生小组合作亲自动手实验,以实验要求为主线,即动手操作,又动脑思考,努力探索圆锥体积的计算方法。这样的学习,学生学的活,记得牢,即发挥教师的主导作用,又体现了学生的主体地位。学生在学习的过程中,始终是一个探索者、研究者、发现者,并获得了富有成效的学习体验

在教学之后感觉到遗憾的是,由于教具有限,参与实验的学生不多,如果每个小组准备一套学具,让他们以小组合作学习的方式使每个学生都能真切的参与到探究中去,这样每个学生 ……此处隐藏43265个字……师:那么你能大胆的猜想一下圆柱的体积是如何计算的吗?

生猜想......

师:我们的猜想对不对,还是要用实验去证明

2、推导圆柱体积计算公式

师:怎么样进行实验呢?结合我们以往学习几何图形的经验,小组讨论交流,说说自己的想法

生:我们是把圆柱的底面分成若干偶数分,然后用刀割开,在进行拼组,变成一个长方体,这样通过转化,圆柱就变成了一个近似的长方体,分的份数越多,越接近一个长方体,然后通过求长方体的体积去求圆柱的体积

师:用心思考的同学总能找到解决问题的办法,那么接下来同学们就利用手里的学习用具完成这个验证实验并完成老师给你们的实践作业纸

(课件出示作业纸)对应和公式推导

选取小组的作业纸进行展示,有其他同学进行评定

课件演示结果

小结:通过转化的数学思想我们将圆柱的体积转化成已经学过的长方体的体积,圆柱的体积计算公式是底面积乘高。

另外,圆柱的底面积、直径、半径和周长四个数据中的任意一个和圆柱的高两个数据就可以求出圆柱的体积。

巩固应用、内化提高

2、

3、下面这个杯子能不能装下这袋奶?(杯子的数据是从里面测量得到的)

8cm

8cm

498ml

498ml

10cm

10cm

回顾整理、反思提升

今天这节课你有什么新的收获说出来和大家一起分享吧!

篇二十八:《圆柱的体积》数学教学设计

一、教学目标:

1.结合具体情境,让学生探索并掌握圆柱体积的计算方法,并能运用计算公式解决简单的实际问题。

2.让学生经历观察、实验、猜想、证明等数学活动过程,发展合情推理能力和初步的演绎推理能力,渗透数学思想,体验数学研究的方法。

3.通过圆柱体积计算公式的推导、运用的过程,体验数学问题的探索性和挑战性,感受数学思考过程的条理性和数学结论的确定性,获得成功的喜悦。

二、教学重难点:

掌握和运用圆柱体积计算公式, 圆柱体积公式的推导过程。

三、教学方法:

从生活情境入手,通过组织猜测、操作、交流等数学活动,使学生经历“做数学”的过程,鼓励学生独立思考,引导学生自主探索、合作交流,让学生根据已有的知识经验创造性地建构圆柱体积计算公式,鼓励解决问题策略的多样化,让学生的思维得到发展,创新精神、实践能力得到提高。

四、教学步骤

(一)创设情景 提出问题情境引入:

某玩具厂厂长,他们厂新近开发了一种积木玩具,这三个积木的底面积和高都相等,他想比较一下这三个积木的体积的大小,同学们有什么方法?

(二)动手实验, 探索公式

1.观察、比较,建立猜想引导生观察例4中的三个几何体,提问:

(1)长方体、正方体的体积相等吗?为什么?

(板书:长方体的体积=底面积×高)

(2)圆柱的体积与长方体、正方体的体积可能相等吗?这三个几何体的底面积和高都相等,它们的体积有什么关系?

2.实验操作,验证猜想让学生自主探究(材料:圆柱体插拼教学具、师准备课件),想办法验证圆柱的体积与长方体、正方体的体积相等。

教师提示:你能想办法把圆柱转化成长方体吗?圆是如何转化成长方形的?可以模仿这样的方法来转化。

(1)小组合作研究怎样将圆柱体转化成一个长方体

(2)小组代表汇报,全班交流

(学生按照自己的方式来转化,会有多种转化方法,教师适时加以鼓励)

演示操作

a请一名学生演示用切插拼的方法把圆柱体转化成长方体。其他学生模仿操作。

b思考:这是一个标准的长方体吗?为什么?如果分割得份数越多,你会有什么发现?

c电脑演示圆柱体转化成长方体的过程(从16等份到32等份再到64等份)

3.观察比较,推导公式

a圆柱体转化成长方体后,什么变了,什么没有变?

b 根据学生的观察、分析、推想,老师完成板书:

长方体的体积=底面积×高

圆柱的体积 = 底面积×高

d小结:要想求出一个圆柱的体积,需要知道什么条件? e学生自学第8页例4上面的一段话:用字母表示公式。

学生反馈自学情况,师板书公式:v=sh

(三)巩固练习, 拓展应用

1.出示第26页试一试,学生理解题意,独立完成。集体订正,说一说每一步列式的根据是什么?使学生明确应用体积公式求圆柱的体积一般需要两个条件,即底面积和高。

2.完成第26页的“练一练”的第1题。

先看图说说每个圆柱中的已知条件,再各自计算,计算后,说一说计算的过程,强调:计算圆柱体的体积要先算出底面积。

3.完成第26页的“练一练”的第2题。

读题后强调说说为什么电饭煲要从里面量底面直径和高,然后列式解答。

4、把直尺绕着它的一条边旋转一圈得到了一个什么图形?它的体积你会计算吗?

(四)总结回顾 评价反思

这节课你学会了什么?你是怎样学会的?

五、板书设计:

圆柱的体积

切拼成的长方体的体积等于圆柱的体积,长方体的底面积就相当于圆柱的底面积,长方体的高就相当于圆柱的高。

长方体的体积=底面积×高

圆柱的体积=底面积×高

字母表示:V=Sh=πrh2

篇二十九:《圆柱的体积》数学教学设计

教学内容:P19-20页例5、例6及补充例题,完成“做一做”及练习三第1~4题。

教学目标:

1、通过用切割拼合的方法借助长方体的体积公式推导出圆柱的体积公式,能够运用公式正确地计算圆柱的体积和容积。

2、初步学会用转化的数学思想和方法,解决实际问题的能力

渗透转化思想,培养学生的自主探索意识。

教学重点:掌握圆柱体积的计算公式。

教学难点:圆柱体积的计算公式的推导。

教学过程:

一、复习

1、长方体的体积公式是什么?(长方体的体积=长×宽×高,长方体和正方体体积的统一公式“底面积×高”,即长方体的体积=底面积×高)

2、拿出一个圆柱形物体,指名学生指出圆柱的底面、高、侧面、表面各是什么,怎么求。

3、复习圆面积计算公式的推导过程:把圆等分切割,拼成一个近似的长方形,找出圆和所拼成的长方形之间的关系,再利用求长方形面积的计算公式导出求圆面积的计算公式。

二、新课

1、圆柱体积计算公式的推导。

(1)用将圆转化成长方形来求出圆的面积的方法来推导圆柱的体积。(沿着圆柱底面的扇形和圆柱的高把圆柱切开,可以得到大小相等的16块,把它们拼成一个近似长方体的立体图形。

《圆柱的体积教学设计人教版(精选29篇)[本文共42494字].doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式